Characterization of Genetic Basis on Synergistic Interactions between Root Architecture and Biological Nitrogen Fixation in Soybean

نویسندگان

  • Yongqing Yang
  • Qingsong Zhao
  • Xinxin Li
  • Wenqin Ai
  • Dong Liu
  • Wandong Qi
  • Mengchen Zhang
  • Chunyan Yang
  • Hong Liao
چکیده

Soybean [Glycine max (L.) Merr] is an important legume crop and its yield largely depends on root architecture (RA) and biological nitrogen fixation (BNF). However, the relationship between RA and BNF, and its genetics behind remain unclear. Here, two soybean genotypes contrasting in RA and their 175 F9:11 recombinant inbred lines (RILs) were evaluated in field. The shallow-root parent, JD12, had better nodulation and higher yield than the deep-root parent, NF58. Strong correlations between shoot dry weight (SDW) and RA or BNF traits existed in the RILs, and the shallow-root group had more and heavier nodules, as well as higher SDW. After inoculating with rhizobia, roots became shallower and bigger, showing strong synergistic interactions between RA and BNF. In total, 70 QTLs were identified for the 21 tested traits. Among them, qBNF-RA-C2, qBNF-RA-O, and qBNF-RA-B1, were newly identified QTLs for BNF and/or RA traits in soybean, which co-located with the QTLs for SDW detected presently, and with the QTLs for yield identified previously. The results together suggest that there are synergistic interactions between RA and BNF, and the QTLs identified here could be used for breeding new soybean varieties with higher yields through optimization of RA traits and BNF capacity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drought Stress Responses in Soybean Roots and Nodules

Drought is considered to be a major threat to soybean production worldwide and yet our current understanding of the effects of drought on soybean productively is largely based on studies on above-ground traits. Although the roots and root nodules are important sensors of drought, the responses of these crucial organs and their drought tolerance features remain poorly characterized. The symbioti...

متن کامل

Effect of Nitrate on Nodulation and Nitrogen Fixation of Soybean

1.1 Biological nitrogen fixation and nitrogen nutrition in soybean plants Biological nitrogen fixation is one of the most important processes for ecosystem to access available N for all living organisms. Although N2 consists 78% of atmosphere, but the triple bond between two N atoms is very stable, and only a few group of prokaryotes can fix N2 to ammonia by the enzyme nitrogenase. Annual rate ...

متن کامل

Discovery and expression analysis of nodulation genes in soybean

Abstract: Soybean develop new root organs that become nitrogen-fixing nodules in response to signals from rhizobacteria and then use complex systemic signalling to control cell proliferation. Recent application of functional genomics resulted in the characterization of genes encoding Leucine rich repeat (LRR) receptor kinases controlling these early nodulation steps. With short and long distanc...

متن کامل

Transcription profiling of soybean nodulation by Bradyrhizobium japonicum.

Legumes interact with nodulating bacteria that convert atmospheric nitrogen into ammonia for plant use. This nitrogen fixation takes place within root nodules that form after infection of root hairs by compatible rhizobia. Using cDNA microarrays, we monitored gene expression in soybean (Glycine max) inoculated with the nodulating bacterium Bradyrhizobium japonicum 4, 8, and 16 days after inocul...

متن کامل

Native strains of Bradyrhizobium japonicum were tested for their effectiveness on nodulation, crop yield and nitrogen fixation in soybean (Glycine max). B. japonicum strains were isolated from soybean root nodules collected from different agro-climatic regions

Native strains of Bradyrhizobium japonicum were tested for their effectiveness on nodulation, crop yield and nitrogen fixation in soybean (Glycine max). B. japonicum strains were isolated from soybean root nodules collected from different agro-climatic regions of Far Western Nepal, viz. Dipayal (607 m asl), Dadeldhura (1097 m asl), Silgadhi (1209 m asl) and Bajura (1524 m asl). The strains were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017